Presenilin-1 deficiency leads to loss of Cajal–Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly
نویسندگان
چکیده
BACKGROUND Presenilin-1 (PS1) is a transmembrane protein that is located in the endoplasmic reticulum and the cis Golgi apparatus. Missense mutations of PS1 that modify gamma-secretase function, leading to a pathologic processing of amyloid precursor protein, are an important cause of familial Alzheimer's disease. Physiologically, the presenilins are involved in the Notch and Wnt-beta-catenin signaling pathways. RESULTS PS1-deficient mice develop a cortical dysplasia resembling human type 2 lissencephaly, with leptomeningeal fibrosis and migration of cortical-plate neurons beyond their normal position into the marginal zone and subarachnoid space. This disorder of neuronal migration is associated with the disappearance of the majority of the cells of the marginal zone, notably most of the Cajal-Retzius pioneer neurons, between embryonic days E14 and E18, and is preceded and accompanied by disorganization of Notch-1 immunoreactivity on the neuronal cell membranes. The marginal zone also becomes depleted of the extracellular matrix protein reelin and chondroitin sulfate proteoglycans. At that stage PS1 is transiently expressed in leptomeningeal fibroblasts, which are mandatory for the trophic support of Cajal-Retzius neurons. CONCLUSIONS In agreement with models in which neuronal migration disorders have been linked to a defect in Cajal-Retzius cells, the loss of most of these cells in PS1-deficient mice leads to cortical dysplasia. Because PS1 is normally expressed in the leptomeninges, and these become fibrotic in the PS1-knockout mice, we favor the hypothesis that the loss of Cajal-Retzius cells is caused by a defective trophic interaction with leptomeningeal cells, possibly involving disruption of Notch signaling.
منابع مشابه
Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members.
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive throu...
متن کاملEctopic clustering of Cajal–Retzius and subplate cells is an initial pathological feature in Pomgnt2-knockout mice, a model of dystroglycanopathy
Aberrant glycosylation of dystroglycan causes congenital muscular dystrophies associated with cobblestone lissencephaly, classified as dystroglycanopathy. However, pathological features in the onset of brain malformations, including the precise timing and primary cause of the pial basement membrane disruption and abnormalities in the migration of pyramidal neurons, remain unexplored. Using the ...
متن کاملThe reeler gene-associated antigen on cajal-retzius neurons is a crucial molecule for laminar organization of cortical neurons
In the neurological mutant mouse reeler, the histological organization of the neocortex develops abnormally and essentially results in an inversion of the relative positions of the cortical layers. The reeler mutation, therefore, provides an insight into the molecular mechanisms underlying the formation of the cortical layers. We have generated a monoclonal antibody (CR-50) that probes a distin...
متن کاملCharacterization of hippocampal Cajal-Retzius cells during development in a mouse model of Alzheimer's disease (Tg2576)
Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed that the number of Cajal-Retzius cells markedly reduced with age in both wild type and in mice over-expressing the Swedish double mutant form of amyloid precursor protein 695 (trans...
متن کاملZic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly.
The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 9 شماره
صفحات -
تاریخ انتشار 1999